SSM (Safe Strings and Memory)

Library of Safe Strings and Memory buffers for the C language
Version 1.2, 20 November 2015

Thierry Lelégard

This manual is for SSM (version 1.2, 20 November 2015), a Safe Strings and Memory buffers

library for C.

Copyright (©) 2014 Thierry Lelégard
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts.

Table of Contents

1 OVEIVIEW . .o 1
1.1 The classical C strings library e 1
1.2 The SSM HDraryo e e e e 2
1.3 SSOM 0D JeCES . o ottt 3
1.4 Using the SSM Hbraryou i e e 3
1.5 Thread-safety 4
1.6 Dynamic memory allocation i 4
1.7 Using "canary" runtime checks i 4
1.8 Supported platforms. ... 5
1.9 Code footPrint . ..o 5

2 Common mechanisms 7
2.1 SSM library identification.o 7

* SOM_MAJOR _VERSTION . .ottt ettt e e e e e e e e e 7
* SSM_MINOR_VERSTIONttt e e e e e e e e e e e e 7
* SSM _VER S TON ..ottt e e 7
* SSM_VERSION _STRINGttt et e e e e e e e e e e e et ettt 7
2.2 ErITOr Te€POTtIIG . . . oottt 7
kSIS TAEUS T oo 7
K SBIM_SUCCESS « t vt vttt ettt ettt ettt e e e e e e e 8
D111 T o o o 8
K SO L atal ... 8
* SSmM_status_String 9
2.3 Addresses and SIZES.ttt 9
* SO M ST ZE M A . . e 9
* SSOM _ADDRE S S MK . .t 9
* SO _Addr S I ZE . .ttt e 9
2.4 Dynamic memory managementoou ettt e 10
* SSM_MALLOC B ettt 10
D= T3 e o Y=Y v 10
* SSM_Set_Memory_Managementuuuuuteetttt ettt ee e 10

3 Static strings ... 13
3.1 Static Strings OVErvIEW.ot 13
3.2 Creating static Stringst e 13

* BB SOt AN b .. 13
* SSM_SSEring _decClare.ttt e 14
* SSM_SString _sStruct 14
*ssm_sstring _Init 15
3.3 Manipulating static SEringso e 15
* SSM_SString _Import oo 15
* ssm_sstring_import_size..... ... i e 15
* SSM_SString _Chars........ .. 16
* ssm_sstring_length.... 16
* ssm_sstring max_lengtht 16
* SSM_SSETANg St ... 16
* SSM_SSEring Set_Tangeot 17

ii

SSM Library 1.2

* SIS ST A COPY - vttt 17

* SSIM_SString _COnCat 17

* SSM_SSEring COMPATE.ttt 18

* SSM_SString _statuUs_Stringcoiiiiiiimiii i 18

4 Dynamic strings............. i 19
4.1 Dynamic Strings OVeIVIEWttt et e 19
4.2 Creating and destroying dynamic strings. ..., 19
* SSM_dStringo 20

* 88M_dString deClare.ttt e 20

* ssm_dstring Init 20

* SSM_dSTring free 21
4.3 Manipulating dynamic Strings 21
* ssm_dstring Import..... 21

* ssm_dstring import_Size....... ... 21

* SSM_dString Chars i e 21

* ssm_dstring length.o o e 22

* 8SM_dString _sSet ... 22

* ssm_dstring_set_range 22

* S8 S A g COPY .+ ot ittt e 23

* SSM_dString _CONCAato ot 23

* SSM_ASETring COMPATE.ttt ettt ettt et 23

* ssm_dstring_status_string 24

5 Static memory buffers 25
5.1 Static memory buffers overview 25
5.2 Creating static buffers......... . 25
* SSM_SbUT fer T 25

*x 8sSMm_sSbuffer_declare. e 26

* 8SM_Sbuffer _StrucCt 26

* SSm_sbuffer_Inito 27
5.3 Manipulating static buffers...... ... 27
* SSm_sbuffer _Import.o e 27

* 8SM_sSbuffer_data. ... 27

* ssm_sbuffer_length. 28

* ssm_sbuffer_max_length......... ..o 28

* ssm_sbuffer_resize. 28

* SSM_sbUffer _Set ... 28

* ssm_sbuffer_set_range i 29

* S8 _S UL O COPY .« ot ittt 29

* 8sMm_sbuffer_concat...... ... 29

* ssm_sbuffer_compare. 29

6 Dynamic memory buffers..................... 31
6.1 Dynamic memory buffers overview....... 31
6.2 Creating and destroying dynamic buffers............ L. 31

* S8 _ADUL F O b .ot 32
*x ssm_dbuffer_declare.o 32
* 8SM_dbuf fer it ..ottt 32
*x 8sM_dbuffer _free 33
6.3 Manipulating dynamic buffers....... 33
* ssm_dbuffer _Import.o 33
*x ssMm_dbuffer_data e 33
* ssm_dbuffer_length...... 34
* S8 _AbUL F O TSI ZE . .ottt e 34
* S8 _AbUL F O SO oottt 34
* ssm_dbuffer_set_range 35
* 88 _dbUffer _COPY .. o 35
* 8SM_dbuf fer_COmCat . ..ottt 35
* 88M_dbUffer_cCompare.t e 35
* 8sm_dbuffer _dnsert e 36
7 Low-level mechanisms.. 37
7.1 Memory corruption detection 37
* ssm_canary_corrupted_handler_t.......... i 37
* ssm_set_canary_corrupted_handler il 37
7.2 Manipulating raw MemMOTYottt e 37
D= 11T oo} o 38
K SSM_COMPATE . . oot ettt ettt e e et e e et et ettt 38
K BB S . v ettt e e 39
* ssm_cstring _length. 39

8 Subset of C11 Annex K (Bound-Checking Interfaces)... .. 41
8.1 Cl11 Annex K OVEIVIEW ...\ttt e 41
8.2 Cl11 Annex K SUppPoOrt. . ..ontti e e 41

K SO LK. o e 42
8.3 CI11 Annex K Reference 42
* SSM_errno_t and @XTmo_t. .. ottt 42
* ssm_rsize_t and rsize_t... ... 42
* SSM_RSIZE_MAX and RSIZE _MAX ...ttt e e e e 42
*x ssm_memmove_S aANd MEMMOVE_S . .ottt ettt e e e e e e e e e e e 43
* SSM_MEMCPY_S aNd MEMCPY_S ...ttt ettt et e et e e e e 43
* ssm_memset_S and MemS et _S ..o ottt 44
* SSM_STTCPY_S AN STECPYT_S -\ttt ittt ettt e 44
* SSM_StYNCPY_S ANd STIMCPY S ..\ttt ittt ittt e 44
* ssm_strcat_s and SErcat_S ...t 45
* ssm_strncat_s and StInCat_S.. ...t 46
* ssm_strnlen_s and StrnLen_St 46
* 8SM_Strerror_s and SErerrOr _S. ...ttt 47
* ssm_strerrorlen_s and Strerrorlen _Sttt 47

Chapter 1: Overview 1

1 Overview

The SSM library provides safe functions for handling strings and memory buffers in C.

This software is distributed under the terms of the GNU Lesser General Public License
(LGPL) version 2.1.

Its source code and documentation are available online:
e Home page: http://ssmlibrary.sourceforge.net/

e Project page: http://sourceforge.net/projects/ssmlibrary/

1.1 The classical C strings library

The problems of the unsafe C string functions from the C-library are well-known. The null-
terminated C string representation and the infamous strcpy() and strcat() functions date
back from the 70’s, in the early days of the UNIX operating system and the original "Kernighan
& Ritchie" C language.

Several functions write a null-terminated variable-length string into a destination buffer which
is known by its base address only. Since the function has no clue about the buffer size, it writes
past the end of the output buffer if the input data are larger than the buffer size; overwriting
memory areas which may contain valuable data. In this context, the concept of buffer as a
bounded memory area is purely in the developer’s mind since the language and its library work
at a very low abstraction level, similar to assembly code.

The impacts of such buffer overflows include:
e Reliability: Data corruption.
e Robustness: Application erratic behaviour or crash (when the overwritten data contained
pointers).
e Security: Malicious code injection or ret-to-libc attack (when the overwritten data include
the stack frame and return pointer).

Using the old unsafe C strings library should be banned from all modern code, especially
when security matters.

To mitigate the intrinsic buffer overflow issue with the old C library functions, variants
were introduced with an additional parameter indicating the maximum size of the buffer. By
convention, most of these functions have an *n’ in the middle of their name such as strncpy ()
or strncat (). If they are used correctly, these functions never write past the end of the user-
supplied buffer. However, using them correctly is quite hard since these functions are inconsistent
with each other:

e The semantic of the size parameter differs:

— Sometimes it includes the final null character and sometimes it does not. In the later
case, the size parameter must be the buffer size minus one.

e When the data to write are larger than the buffer, no extra data is overwritten. But the
exact behavior depends on the function:

— Overflow detection: Can we detect that a larger buffer would have been required? Some
functions return a specific value indicating that the buffer was too short. With some
other functions, the returned data is silently truncated, generating an incorrect result
without any way to detect it.

— Truncated or undefined content: Is the string in the returned buffer truncated or
undefined (ie. maybe not written at all)?

— Null-terminated or not: When the string is too large, some functions write n characters
without a null terminator while other functions write n-1 characters followed by a null
terminator.

http://ssmlibrary.sourceforge.net/
http://sourceforge.net/projects/ssmlibrary/

2 SSM Library 1.2

As a consequence, the ’n’ functions are quite hard to use correctly. Each function has a
specific behavior and must be surrounded by distinct user-written checks every time. In other
words, using the ’n’ functions is very error-prone and they should be banned as well.

With the C11 language standard, an optional set of ’>_s’ functions was introduced. Their
API is slightly better defined and more consistent than for the ’n’ functions. See Section 8.1
[C11 Annex K Overview|, page 41 for more details.

More generally, the ’n’ and ’_s’ functions have the same fundamental flaw as the classical
string functions, their abstraction level is very low. The concepts of string or buffer do not
exist. These functions manipulate addresses and sizes independently. Providing the correct size
at the right time is entirely left to the application developer whose work is more complex and
consequently more error-prone.

Other alternative C strings libraries exist such as the Better String Library!, the Safe C
Library? or the Managed String Library®. An online article* lists a comparative description of
a large number of string libraries, although not limited to the C language.

Some of these libraries provide a higher level of abstraction to manipulate strings. But no
general consensus exists on a safe alternative to the old C string library.

1.2 The SSM library
The SSM library is a safe and reliable alternative the old C string library.

As mentioned in the previous section, several alternatives already exist for the unsafe C string
library. So, why creating a new library?

The SSM library presents a unique combination of characteristics that should be considered
as mandatory for environments requiring both safety and security. To our knownledge, no other
library meets all these requirements altogether.

These requirements are:
e Handle strings and raw memory buffers.

e For both types of object, provide a static alternative (fixed size) and a dynamic alternative
(unbounded size using dynamic memory allocation).

e No dependency on other external libraries.
e Portable and light-weight. Can be used in various environments:
— Application code.
— Linux kernel modules.
— Embedded systems.
e Proven and robust code for safety and security:
— Simple and straightforward code.
— Complete unitary tests based on CUnit.
— Automatic non-regression tests based on unitary tests.

— Automatic static code analysis using cppcheck and flawfinder (other analyzers may
be added).

— Automatic code coverage analysis using gcov.
— Achieve 100% code coverage in analysis.

e Complete reference documentation.

1 http://bstring.sourceforge.net

2 http://sourceforge.net /projects/safeclib/

3 https: / /www.securecoding.cert.org/confluence/display /seccode/Managed+String+Library
4

http://www.and.org/vstr/comparison

http://bstring.sourceforge.net
http://sourceforge.net/projects/safeclib/
http://sourceforge.net/projects/safeclib/
https://www.securecoding.cert.org/confluence/display/seccode/Managed+String+Library
http://www.and.org/vstr/comparison

Chapter 1: Overview 3

Note that using this library in C++ is discouraged since the C++ Standard Template Library
(STL) contains much better classes, namely std::string and std::vector. This library is
only a pitiful attempt to fix one of the worst achievements in software engineering, the C string
library...

1.3 SSM objects

The SSM library defines two types of objects: strings and memory buffers. Each type exists
in two flavors: static and dynamic.

A memory buffer contains raw binary data of any type. Its size is expressed in bytes.

A string is supposed to contains characters only (type char). For compatibility with clas-
sical C-strings, the internal representation of a string is always followed by a zero byte. This
terminating zero byte, however, is not considered as a part of the string (it is not included in
the string length for instance).

A static string or memory buffer is declared with a static maximum size, just like a regular C
array. It can contain up to that number of characters or bytes. A static string or memory object
is a fast low-level type without any sort of memory allocation. The storage for the characters
or bytes is reserved within the variable, like C arrays.

Whenever an operation requires more memory than reserved in a static string or memory
buffer, the result is safely truncated. In the case of a static string, a truncated result is always
null-terminated. The truncation is always reported in a returned status.

A dynamic string or memory buffer uses dynamic memory allocation to store the content.
One advantage is that truncation never occurs. One drawback is the overhead of memory
allocation.

See Section 2.4 [Dynamic memory management|, page 10 for more details on the implemen-
tation of memory allocation.

But the worst drawback of dynamic objects is the risk of memory leak. All dynamic objects
must be explicitely freed by the user. Failing to do so results in a memory leak. This is
particularly dangerous when an early return path is taken, bypassing the cleanup code at the
end of a block. Note that the main reason for this risk is that the C language has no concept of
destructor as in C++.

Another risk of dynamic objects is the memory allocation failure. Whenever a memory
allocation failed within an SSM function, the function returns the status value SSM_NOMEMORY.
In that case, the dynamic object which could not be reallocated is not modified. So, the result
is still a safe object. But the application is reliable only if the user code properly checks the
returned status value.

1.4 Using the SSM library

All declaractions are contained in the single header files ssm.h.

All public identifiers which are exported by the SSM library start with the prefix ssm_
(functions) or SSM_ (constants).

All code is contained into one single static library. To allow fine-grained selective linking in
constrained environments, each function is implemented in a separate object file.

There is also a shared library version of the SSM library. Due to the usage restrictions of
the GNU Lesser General Public License, proprietary applications must link against the shared
library version. They are not allowed to link against the static library, unless the application is
provided in an object form which can be relinked using another version of the SSM library.

On UNIX, Linux and Cygwin environments, the static library is named libssm.a and the
shared library is named libssm.so.

4 SSM Library 1.2

On Windows systems with Microsoft Visual C++, the static library is named ssmlib.1ib.

On Windows systems with Microsoft Visual C++, the dynamic library is named ssmd11.411
and the corresponding symbol library is named ssmd11.1ib (this is the file which is used by the
linker).

Important: When linking against the DLL ssmd11.d11, a special symbol must be defined
during the compilation. Define the symbol SSM_USE_DLL before including ssm.h, either as a
project option (preferred solution) or in the source file as follow:

#define SSM_USE_DLL
#include "ssm.h"

1.5 Thread-safety

Unless explicitely specified otherwise, all functions in the SSM library are thread-safe as long
as they work on distinct objects.

If the same object (static string, dynamic string, static buffer, dynamic buffer) is concurrently
accessed by multiple threads, some explicit exclusive access mechanism must be implemented at
the application code level before invoking the SSM library on this object.

1.6 Dynamic memory allocation

For dynamic strings and dynamic memory buffers, the default memory allocation and deallo-
cation functions are the standard malloc() and free(). However, they may not be ideal in all
environments, especially in constrained systems. To cope with that, the user application may
specify alternative memory management functions using ssm_set_memory_management (). This
function shall be called before any usage of dynamic strings or buffers.

Another usage of the replacement of the memory allocation functions is the handling of
memory allocation failures. In many applications, a memory allocation failure is fatal and
cannot be recovered. It could be useful to provide an application-specific memory allocation
routine which reports the allocation failure and aborts the application.

Note that there is no replacement for realloc(). No such function is used. Although
realloc() could bring some performance improvement over a sequence of malloc(), copy and
free(), the result is unpredictable in case of memory allocation failure; there is no guarantee
that the previous memory area was preserved. To keep the library safe and predictable, it does
not use realloc().

In environments where the standard malloc() and free() are not available, such as the
Linux kernel, there is no default memory management functions. The user shall invoke ssm_
set_memory_management () before using dynamic strings or buffers. Otherwise, all memory
allocations will fail.

1.7 Using "canary" runtime checks

All functions in this library are safe by design, meaning that no memory corruption can occur
using the library. However, there is always a risk that some user code corrupts the memory areas
which are used to store the safe strings and memory buffers.

All functions in this library exist in two flavors. The default form of a function assumes that
no external cause of memory corruption exists and is typically used for production code. The
second form of a function uses "canary" runtime checks. In this approach, all data structures
are protected using "canary" values at the start and end of all data structures. If a memory
corruption occurs, it is likely that these canary values are modified. The canary form of each
function performs runtime checks to detect memory corruptions.

To enable the canary runtime checks, define the symbol SSM_USE_CANARY before including
ssm.h as follow:

Chapter 1: Overview

#define SSM_USE_CANARY

#include "ssm.h"

See the function ssm_set_canary_corrupted_handler() for a description of the handling
of memory corruptions when they are detected.

1.8 Supported platforms

The SSM library has been tested on the following platforms in user-mode applications. When
a Linux kernel version is specified, the SSM library has also been tested in Loadable Kernel
Modules (LKM) on the platform.

Operating System
Ubuntu 12.04 LTS
Ubuntu 14.04 LTS
Fedora 20

Red Hat Enterprise Linux 6.1
Linaro 12.05
Microsoft Windows 7
Microsoft Windows 7
Microsoft Windows 7
Microsoft Windows 7
Microsoft Windows 7
Microsoft Windows 7

1.9 Code footprint

Architecture

Intel x86-64
Intel x86-64
Intel x86-64
Intel x86-64
ARM v7
Intel x86
Intel x86
Intel x86
Intel x86-64
Intel x86
Intel x86-64

Compiler

gee 4.6.3

gce 4.8.2

gee 4.8.2

gee 4.4.5

gce 4.6.3

Visual C++ 2010 Express
Visual C++ 2013 Express
Visual C++ 2015 Express
Visual C++ 2015 Express
gee 4.8.2 (Cygwin)

gee 4.8.2 (Cygwin)

Linux Kernel
3.2.0

3.13.0

3.14.8

2.6.32

In embedded systems, there is a usual requirement for a small code footprint. The following
table summarizes the code footprint in bytes of various usages of the SSM library on some
standard platforms for the version 1.1 of the SSM library.

Feature

Total code size

Production only (non-canary)
Static strings only

Dynamic strings only

Static buffers only

Dynamic buffers only

C11K only, without strerror

ARM v7
6363
3711
1201
1422
1113
1334
744

Please note the following points:

Intel 32 Intel 64
14948 13092

8356
2912
3768
2600
3456
1980

7314
2506
3185
2249
2928
1657

e Each value represents the total size of the code, data and BSS segments in bytes.

e The code was compiled with size optimization in mind. With the default optimizations, the

code is likely to be larger.

e All results are produced by GCC. MSVC code size was not checked.
e Slightly different values may be found with different versions of GCC.

e The reported values depend on the version of the library and need to be updated with the
code. Make sure the documentation was correctly updated.

e The code is compiled as position-independent (-fPIC) by default to allow the creation of
shared libraries. It has been observed that the code footprint is slightly smaller without

this option.

SSM Library 1.2

e The total library code size includes the versions with and without "canary checks", which
is not used in practice. The first line is consequently not meaningful in production envi-
ronments. All subsequent results include only the "production" code (without "canary"
checks).

e The sections about static or dynamic strings or memory buffers list the total code size for
a given feature. But note that:

— An application embeds only the code it requires, not all modules.

— Some features use common code. Using two features usually requires less than the sum
of the code for the two features.

Chapter 2: Common mechanisms 7

2 Common mechanisms

2.1 SSM library identification

* SSM_MAJOR_VERSION

E#define SSM_MAJOR_VERSION 1 }

This macro defines the major version number of the SSM library, 1 in the example.

* SSM_MINOR_VERSION

E#define SSM_MINOR_VERSION 2 }

This macro defines the minor version number of the SSM library, 2 in the example.

* SSM_VERSION

@define SSM_VERSION 102 J

This macro defines the version number of the SSM library as one single integer value equal
to 100 * major + minor. So version 1.2 gives 102 in the example.

* SSM_VERSION_STRING

@define SSM_VERSION_STRING "1.2" j

This macro defines the version of the SSM library as a string, "1.2" in the example.
2.2 Error reporting

* ssm_status_t

Status values, as returned by all SSM functions.

G:ypedef enum {...} ssm_status_t; J

This enumeration type defines the status values, as returned by all SSM functions.

As a general rule, if the returned value is not zero (SSM_0K), the result is not the expected
one. But, in all cases, the output buffers are safe values, meaning that truncated strings are
still correctly null-terminated and the size of a truncated memory buffer indicates the useable
(truncated) part of the buffer.

Status values can be categorized in three classes: success, non-fatal errors and fatal errors.
The application has the choice to either check for individual status values or use one of the
status checking macros.

Status value Description Severity
SSM_OK The function executed successfully. Success
SSM_TRUNCATED The result is truncated but safe. Success

8 SSM Library 1.2

SSM_EQUAL Objects are equal after comparison. Success
SSM_LOWER Object 1 is lower than object 2 after comparison. Success
SSM_GREATER Object 1 is greater than object 2 after comparison. Success
SSM_NULLQOUT A NULL pointer was provided as output parameter. Non-fatal
SSM_SIZETOOLARGE Some size is larger than SSM_SIZE_MAX. Non-fatal
SSM_INDEXRANGE An index or size parameter is out of range. Non-fatal
SSM_SIZEZERO Some size is zero. Non-fatal
SSM_NULLIN A NULL pointer was provided as input parameter. Non-fatal
SSM_NOMEMORY Memory allocation failure, result is unchanged. Fatal
SSM_CORRUPTED Memory was previously corrupted, result is undefined Fatal
but safe.
SSM_BUG Internal inconsistency, there is a bug in the SSM library. Fatal

The status values SSM_SIZEZERO and SSM_NULLIN are usually returned by the C11K functions
only. The SSM functions always accept an empty destination buffer or a null pointer as input
(equivalent to an empty string or buffer).

The following functions (they are actually macros) check the severity of a ssm_status_t
value.
* SsSm_sSuccess

Check if a status indicates a success.

[int ssm_success (ssm_status_t status);

Parameter Mode Description
status in A status to check.
return A non-zero value (true) if status indicates a success and zero (false)
if it indicates an error.
A success means that the operation completed successfully. A success status may also indicate
a truncation but, in the general case, this is not an error, the supplied inputs were too large for
the application buffer but the result is safe.

As a general rule, if you want to test that an operation gave the exact result, compare
it against SSM_OK. If you simply want to check if the application processing may reasonably
continue, use ssm_success ().

* SSm_error

Check if a status indicates an error.

ELnt ssm_error (ssm_status_t status);

Parameter Mode Description
status in A status to check.
return A non-zero value (true) if status indicates an error (fatal or non-fatal)
and zero (false) if it indicates a success.

* ssm_fatal

Check if a status indicates a fatal error.

[int ssm_fatal (ssm_status_t status);

Chapter 2: Common mechanisms 9

Parameter Mode Description
status in A status to check.
return A non-zero value (true) if status indicates a fatal error and zero (false)
if it indicates a success or a non-fatal error.

A fatal error indicates that something went badly wrong in the application such as a memory
corruption or no more available memory. Trying to continue after a fatal error may be dangerous
since the application environment may be unstable. The usual response to a fatal error is
terminating the application after the minimal cleanup of the resources.

Conversely, a non-fatal error indicates that the SSM function could not perform the requested
operation because, for instance, a parameter was incorrect. In that case, the output objects (if
any) are not modified and the application may continue after performing the adequate error
processing.

* ssm_status_string

Get a null-terminated string describing a status value.

[const char* ssm_status_string (ssm_status_t status);

Parameter Mode Description
status in A status to get the description of.
return Address of a static constant null-terminated string describing status.

All calls with the same status return the same address. The pointed string shall not be
modified by the application. Any status which does not correspond to a known value will return
the same "Unknown" string.

2.3 Addresses and sizes

* SSM_SIZE_MAX

The value of this macro specifies the maximum size of a used-defined memory area.

Sometimes, the application has to pass the size of a memory area to the SSM library. Such a
size uses the predefined type size_t. The C standard defines this type as unsigned. Computing
a size_t value may result in an underflow, giving a very large unsigned value. To detect these
wrong values, the SSM library does not accept size_t values above some arbitrary large but
reasonable value named SSM_SIZE_MAX.

This value is hard-coded to 23! —1 (approximately 2 giga-bytes). In practice, size_t is either
32 or 64 bits wide. But, even on 64-bit platforms, having a user-defined memory area larger
that 2 GB is suspect and consequently rejected.
* SSM_ADDRESS_MAX

The value of this macro specifies the maximum representable address in the system as a value
of type voidx.
* ssm_addr_size

Compute a safe address plus an offset.

[const void* ssm_addr_size (const void* addr, size_t size); }

10 SSM Library 1.2

Parameter Mode Description
addr in Base address.
size in Offset to add to addr.

return Return addr plus size without overflow. The result is always greater
than addr, returning SSM_ADDRESS_MAX in case of overflow.

When very large (and usually incorrect) sizes are added to an address, there is a risk of
arithmetic overflow. The resulting address is lower than the base address, which usually pro-
duces nasty side effects in address or pointer comparisons. This function (which is inlined for
performance) solves this problem.

2.4 Dynamic memory management

This section describes how the application can override the default memory management
functions for the dynamic strings and dynamic memory buffers.

* ssm_malloc_t

Memory allocation function type.

E:ypedef void* (*ssm_malloc_t) (size_t size); }
Parameter Mode Description
size in Size in bytes of the area to allocate.
return The base address of the allocated area or NULL if no memory is
available.

This function profile is used to specify an alternative function to malloc().

The SSM library never allocates memory areas larger that SSM_SIZE_MAX.

* ssm_free_t

Memory deallocation function type.

E‘,ypedef void (*ssm_free_t) (void* ptr); }
Parameter Mode Description
ptr in Address of a previously allocated area.

This function profile is used to specify an alternative function to free().

The SSM library never invokes the free function with a NULL pointer.

* ssm_set_memory_management

Specify alternate functions for memory management.

E/oid ssm_set_memory_management (ssm_malloc_t newMalloc, ssm_free_t newFree); }
Parameter Mode Description
newMalloc in Alternate function for malloc().

newlkFree in Alternate function for free().

Chapter 2: Common mechanisms 11

These functions are used by dynamic strings and dynamic memory buffers.

For user-mode programs, the default functions are the standard malloc() and free(). On
some specific platforms, such as the Linux kernel, there is no default memory allocation functions
and ssm_set_memory_management () must be invoked before using dynamic strings or dynamic
memory buffers.

If any of the parameters newMalloc and newFree is NULL, then the library reverts to the
corresponding default memory management function.

This function is not thread-safe and shall be invoked before the first usage of dynamic strings
or dynamic memory buffers.

Chapter 3: Static strings 13

3 Static strings

3.1 Static strings overview

A static string is declared with a static maximum size, just like a regular C array. It can
contain up to that number of characters. A static string is a fast low-level type without any sort
of memory allocation. The storage for the string characters is reserved within the variable, like
C arrays.

A static string is always null-terminated, even if an operation results in a truncation.

A static string is a polymorphic object which is formally defined by the abstract type ssm_
sstring_t. In that case, abstract means that pointers to existing objects of this type can be
used but no object shall be defined using this type name.

This is why a static string should be declared by the macro ssm_sstring_declare(). This
macro ensures that the correct amount of storage is reserved and the variable is properly ini-
tialized to an empty string.

The following example defines a static string named foo with a maximum capacity of 50
characters, not including the trailing null character:

ssm_sstring_declare (foo, 50);

In practice, a variable which is defined by the macro ssm_sstring_declare() has no named
type. It is only specified that it contains a field named str which is of type ssm_sstring_t.
Thus, the actual ssm_sstring_t is in fact foo.str. Example:

ssm_sstring_declare (foo, 10);
ssm_sstring_import (&foo.str, "foo bar");
size_t len = ssm_sstring_length (&foo.str);

Note that, unlike C++, the C language does not forbid the definition of objects of an abstract
type (the concept of abstract type does not even exist in C). So the following code compiles but
it is incorrect: the variable is uninitialized and no storage is reserved for the string characters.

SO, DO NOT USE THIS:

ssm_sstring_t s;
3.2 Creating static strings

* ssm_sstring_t

Abstract definition of a static string.

E:ypedef ... ssm_sstring_t; }

No object of this type shall be defined. To define an actual static string, use the macro
ssm_sstring_declare(). See the section “Static strings overview” above for more details on
the usage of static strings.

Correct example:

ssm_sstring_declare (s, 10);

ssm_sstring_import (&s.str, "foo bar");
size_t len = ssm_sstring length (&s.str);
myFunc (&s.str);

Incorrect example, DO NOT USE:

14

SSM Library 1.2

ssm_sstring t s;

Pointer to the type ssm_sstring_t may be used as function parameters. Example:

void myFunc (const ssm_sstring t* s) {

}

size_t len = ssm_sstring length (s);

* ssm_sstring_declare

Declare a ssm_sstring_t variable.

#define ssm_sstring_declare(variable,size) \
ssm_sstring_struct(size) variable = ssm_sstring_init(size)

Parameter
variable

size

Description

Name of the variable to declare. The variable is safely initialized to the empty
string.

Maximum number of characters in the string, not including the trailing null
character. Shall be a compile-time constant, unless the compiler accepts
variable-length arrays. If the compiler accepts such runtime sizes, size shall
be an idempotent expression (ie. its result shall yield the same value for each
evaluation and it shall have no side effect).

This macro declares a ssm_sstring_t variable.

In practice, variable has no named type. It is only specified that it contains a field named
str which is of type ssm_sstring_t. Thus, the actual ssm_sstring_t is in fact variable.str.

For syntactic reasons, this macro cannot be used when the ssm_sstring_t is not a single
variable but part of a structure for instance. In that case, use the macros ssm_sstring_struct
and ssm_sstring_init().

* ssm_sstring_struct

Declare an uninitialized ssm_sstring_t field.

E#define ssm_sstring_struct(size)

Parameter
size

Description

Maximum number of characters in the string, not including the trailing null
character. Shall be a compile-time constant, unless the compiler accepts
variable-length arrays.

This macro declares an uninitialized ssm_sstring_t field.

When declaring a simple ssm_sstring_t variable, use the macro ssm_sstring_declare()
instead. The macro ssm_sstring_struct () shall be reserved for contexts where it is not possible
to initialize the data, such as in the case of a field within a structure. Be sure to initialize the
corresponding data using the macro ssm_sstring_init () with exactly the same size value.

Example:

typedef struct {

int before;
ssm_sstring_struct (50) str;

Chapter 3: Static strings 15

int after;
} my_struct_t;

my_struct_t a = {
.before = 0x1234567,
.Sstr = ssm_sstring_init(50),
.after = Ox1ABCDEF

s

* ssm_sstring_init

Initializer for a ssm_sstring_t field.

E#define ssm_sstring_init(size)

Parameter Description

size Maximum number of characters in the string, not including the trailing null
character. Shall be a compile-time constant, unless the compiler accepts
variable-length arrays. Shall be exactly the same value as used in the cor-
responding ssm_sstring_struct () macro.

This macro returns the initializer for a ssm_sstring_t field.
See the macro ssm_sstring_struct() for an example.

When declaring a simple ssm_sstring_t variable, use the macro ssm_sstring_declare()
instead.

3.3 Manipulating static strings

* ssm_sstring_import

Copy ("import") a null-terminated C-string into a ssm_sstring_t.

[ssm_status_t ssm_sstring_import (ssm_sstring_t* dest, const charx* src);

Parameter Mode Description

dest out Receive the C-string.

src in Address of a null-terminated C-string. Can be NULL (same as empty
string).

return A status value.

* ssm_sstring_import_size

Copy ("import") an optionally null-terminated C-string into a ssm_sstring_t.

ssm_status_t ssm_sstring_import_size (ssm_sstring_t* dest,
const charx src,
size_t maxSize);

Parameter Mode Description
dest out Receive the C-string.

16 SSM Library 1.2

src in Address of a possibly null-terminated C-string. Can be NULL (same
as empty string).
maxSize in Maximum number of characters to copy from src.

return A status value.

* ssm_sstring_chars

Read-only access to a ssm_sstring_t as a null-terminated C-string.

E::onst char* ssm_sstring_chars (const ssm_sstring_t* str);

Parameter Mode Description
str in The static string to read.
return The address of a read-only null-terminated C-string. The application
is not allowed to modify this string. In case of detected memory
corruption, return the address of an empty C-string.

Can be used to invoke legacy functions requiring a C-string.

* ssm_sstring_length

Get the length of a ssm_sstring_t.

[size_t ssm_sstring_length (const ssm_sstring_t* str);

Parameter Mode Description
str in The static string to read.
return The length of the string. In case of null src¢ or detected memory
corruption, return zero.

This function executes in constant time (the length value is stored, unlike strlen() there is
no need to read the string up to the end to find the length).

* ssm_sstring_max_length

Get the maximum string length that can be held in a ssm_sstring_t.

[size_t ssm_sstring_max_length (const ssm_sstring_t* str) ;

Parameter Mode Description
str in The static string to read.
return The maximum number of characters that can be held in the string ob-
ject, not including the null terminator. In case of null src or detected
memory corruption, return zero.

* ssm_sstring_set

Set all characters in a ssm_sstring_t to a given value.

[ssm_status_t ssm_sstring_set (ssm_sstring_t* str, char value);

Chapter 3: Static strings 17

Parameter Mode Description
str in,out The static string to update.
value in Value to set in all characters in the string.

return A status value.

All characters inside the string are updated with the same common value. The size of the
string is unchanged.

* ssm_sstring_set_range

Set a range of characters in a ssm_sstring_t to a given value.

ssm_status_t ssm_sstring_set_range (ssm_sstring_t* str,
size_t start,
size_t length,
char value);

Parameter Mode Description

str in,out The static string to update.

start in Starting index in the string of the area to modify.
length in Length in bytes of the area to modify.

value in Value to set in all characters in the area to modify.

return A status value.

All characters inside a specified range in the string are updated with the same common value.
The size of the string is unchanged.

If the specified range is partially or entirely outside the current string size, the part of the
range which is inside the string is updated and SSM_TRUNCATED is returned.

* ssm_sstring_copy

Copy the content of a ssm_sstring_t into another one.

[ssm_status_t ssm_sstring_copy (ssm_sstring_t* dest, const ssm_sstring_t* src); }

Parameter Mode Description
dest out Receive a copy of the static string src.
src in Source static string. Can be NULL (same as empty string).

return A status value.

* ssm_sstring_concat

Append the content of a ssm_sstring_t at the end of another one.

[ssm_status_t ssm_sstring_concat (ssm_sstring_t* dest, const ssm_sstring_tx src)}

Parameter Mode Description
dest in,out Receive a copy of the static string src at end of previous value.
src in Source static string. Can be NULL (same as empty string).

return A status value.

18 SSM Library 1.2

* ssm_sstring_compare

Compare the content of two ssm_sstring_t.

ssm_status_t ssm_sstring_compare (const ssm_sstring_t* bufl,
const ssm_sstring_t* buf2);

Parameter Mode Description
bufl in First string to compare. Can be NULL (same as empty string).
buf2 in Second string to compare. Can be NULL (same as empty string).

return A status value, SSM_GREATER, SSM_EQUAL or SSM_LOWER according to
whether the first string is greater than, equal to or less than the second
string. Can also be an error code.

* ssm_sstring_status_string

Get the description of a status value in a ssm_sstring_t.

ssm_status_t ssm_sstring_status_string (ssm_sstring_t* dest,
ssm_status_t status);

Parameter Mode Description
dest out Receive the description string.
status in A status to get the description of.

return A status value.

All calls with the same status return the same description string. Any status which does not
correspond to a known value will return the same "Unknown" string.

Chapter 4: Dynamic strings 19

4 Dynamic strings

4.1 Dynamic strings overview
A dynamic string uses dynamic memory allocation to store the content.

See Section 2.4 [Dynamic memory management|, page 10 for more details on the implemen-
tation of memory allocation.

A dynamic string is defined by the type ssm_dstring_t. Since a dynamic string points to
allocated memory, it is essential that any such object is properly initialized. This is why a
dynamic string should be declared by the macro ssm_dstring_declare(). This macro ensures
that the variable is properly initialized to an empty string.

The following example defines a dynamic string named foo:

ssm_dstring_declare (foo);

ssm_dstring_import (&foo, "foo bar");
size_t len = ssm_dstring_length (&foo);

Note that, unlike C++, the C language does not have any constructor mechanism providing a
guaranteed initial content to an object. Using an uninitialized dynamic string object may lead
to crash or other unexpected behavior. So the following code compiles but it is incorrect: the
variable is uninitialized and may point to invalid data.

SO, DO NOT USE THIS:
ssm_dstring_t s;

To avoid memory leaks, it is essential that any dynamic string object is freeed before the
object goes out of scope. Use the function ssm_dstring_free() as illustrated below:

void f(void)
{

ssm_dstring_declare (foo);

ssm_dstring_free (&foo);

3

Pay attention to early return paths which could lead to memory leaks as in the following
example:

void f(void)

{
ssm_dstring_declare (foo);
if (some_condition) {
/* MEMORY LEAK HERE x*/
return;
}
ssm_dstring_free (&foo);
}

4.2 Creating and destroying dynamic strings

20 SSM Library 1.2

* ssm_dstring_t

Definition of a dynamic string.

[%ypedef ... ssm_dstring_t; }

To define an actual dynamic string, use the macro ssm_dstring_declare(). See the section
“Dynamic strings overview” above for more details on the usage of dynamic strings.

Correct example:

ssm_dstring_declare (s);

ssm_dstring_import (&s, "foo bar");
size_t len = ssm_dstring_ length (&s);

Incorrect example, the object is not properly initialized. DO NOT USE:

ssm_dstring_t s;

* ssm_dstring_declare

Declare a ssm_dstring_t variable.

#define ssm_dstring_declare(variable) \
ssm_dstring_t variable = ssm_dstring_init

Parameter Description
variable Name of the variable to declare. The variable is safely initialized to the empty
string.

This macro declares a ssm_dstring_t variable.

For syntactic reasons, this macro cannot be used when the ssm_dstring_t is not a single
variable but part of a structure for instance. In that case, use the macro ssm_dstring_init ()
to initialize the ssm_dstring_t field.

* ssm_dstring_init

Initializer for a ssm_dstring_t field.

[#define ssm_dstring_init(size) ... }

This macro returns the initializer for a ssm_dstring_t field.

When declaring a simple ssm_dstring_t variable, use the macro ssm_dstring_declare()
instead. The macro ssm_dstring_init shall be reserved for contexts where it is not possible
to initialize the data, such as in the case of a field within a structure. Be sure to initialize the
corresponding data using the macro ssm_dstring_init.

Example:

typedef struct {
int before;
ssm_dstring t str;
int after;

} my_struct_t;

my_struct_t a = {

Chapter 4: Dynamic strings 21

.before = 0x1234567,
.str = ssm_dstring_init,
.after = Ox1ABCDEF

};

* ssm_dstring_free

Free a ssm_dstring_t dynamic string.

[ssm_status_t ssm_dstring_free (ssm_dstring_t* str);

Parameter Mode Description
buf injout Dynamic string to free.
return A status code.

This function frees a ssm_dstring_t.

Upon return, the object is still valid but has the semantic of an empty string and has no
longer any dynamic storage associated with it.

4.3 Manipulating dynamic strings

* ssm_dstring_import

Copy ("import") a null-terminated C-string into a ssm_dstring_t.

[ssm_status_t ssm_dstring_import (ssm_dstring t* dest, const char* src);

Parameter Mode Description

dest out String to fill.

src in Address of a null-terminated C-string. Can be NULL (same as empty
string).

return A status value.

* ssm_dstring_import_size

Copy ("import") an optionally null-terminated C-string into a ssm_dstring_t.

ssm_status_t ssm_dstring_import_size (ssm_dstring_t* dest,
const charx src,
size_t maxSize);

Parameter Mode Description
dest out String to fill.
src in Address of a possibly null-terminated C-string. Can be NULL (same

as empty string).
maxSize in Maximum number of characters to copy from src.
return A status value.
* ssm_dstring_chars

Read-only access to a ssm_dstring_t as a null-terminated C-string.

22 SSM Library 1.2

[const char* ssm_dstring_chars (const ssm_dstring_t* str);

Parameter Mode Description
str in The dynamic string to read.
return The current address of a read-only null-terminated C-string. The
application is not allowed to modify this string. In case of detected
memory corruption, return the address of an empty C-string.

Warning: The returned address is valid only as long as str is not modified. Since this
function is quite fast, it is recommended to not store the returned value and invoke the function
each time the address is needed.

Good example:

dump (ssm_dstring_data (&str));
ssm_dstring_import (&str, "foo");
dump (ssm_dstring_data (&str));

Bad example, DO NOT DO THIS:

const void* data = ssm_dstring_data (&str);

dump (data);

ssm_dstring_import (&str, "foo");

dump (data); /* WRONG, ’data’ may no longer point to ’str’ characters */

* ssm_dstring_length
Get the length of a ssm_dstring_t content.

[size_t ssm_dstring_length (const ssm_dstring_t* str);

Parameter Mode Description
str in The dynamic string to read.
return The length of the string. In case of null src or detected memory
corruption, return zero.

This function executes in constant time (the length value is stored, unlike strlen() there is
no need to read the string up to the end to find the length).

* ssm_dstring_set

Set all characters in a ssm_dstring_t to a given value.

[ssm_status_t ssm_dstring_set (ssm_dstring_t* str, char value);

Parameter Mode Description
str in,out The dynamic string to update.
value in Value to set in all characters in the string.

return A status value.

All characters inside the string are updated with the same common value. The size of the
string is unchanged.

* ssm_dstring_set_range

Set a range of characters in a ssm_dstring_t to a given value.

Chapter 4: Dynamic strings 23

ssm_status_t ssm_dstring_set_range (ssm_dstring_t* str,
size_t start,
size_t length,
char value);

Parameter Mode Description

str in,out The dynamic string to update.

start in Starting index in the string of the area to modify.
length in Length in characters of the area to modify.

value in Value to set in all characters in the area to modify.

return A status value.

All characters inside a specified range in the string are updated with the same common value.
The size of the string is unchanged.

If the specified range is partially or entirely outside the current string size, the part of the
range which is inside the string is updated and SSM_TRUNCATED is returned.

* ssm_dstring_copy

Copy the content of a ssm_dstring_t.

[ssm_status_t ssm_dstring_copy (ssm_dstring_t* dest, const ssm_dstring_t* src); }

Parameter Mode Description
dest out Receive a copy of the dynamic string src.
src in Source dynamic string. Can be NULL (same as empty string).

return A status value.

* ssm_dstring_concat

Append the content of a ssm_dstring_t at the end of another one.

[ssm_status_t ssm_dstring_concat (ssm_dstring_t* dest, const ssm_dstring_tx src)}

Parameter Mode Description
dest in,out Receive a copy of the dynamic string src at end of previous value.
sre in Source dynamic string. Can be NULL (same as empty string).

return A status value.

* ssm_dstring_compare

Compare the content of two ssm_dstring_t.

ssm_status_t ssm_dstring_compare (const ssm_dstring_t* bufl,
const ssm_dstring_t* buf2);

Parameter Mode Description
bufl in First string to compare. Can be NULL (same as empty string).
buf2 in Second string to compare. Can be NULL (same as empty string).

24 SSM Library 1.2

return A status value, SSM_GREATER, SSM_EQUAL or SSM_LOWER according to
whether the first string is greater than, equal to or less than the second
string. Can also be an error code.

* ssm_dstring_status_string

Get the description of a status value in a ssm_dstring_t.

ssm_status_t ssm_dstring_status_string (ssm_dstring_t* dest,
ssm_status_t status);

Parameter Mode Description
dest out Receive the description string.
status in A status to get the description of.

return A status value.

All calls with the same status return the same description string. Any status which does not
correspond to a known value will return the same "Unknown" string.

Chapter 5: Static memory buffers 25

5 Static memory buffers

5.1 Static memory buffers overview

A static memory buffer is declared with a static maximum size, just like a regular C array.
It can contain up to that number of bytes. A static buffer is a fast low-level type without any
sort of memory allocation. The storage for the buffer data is reserved within the variable, like
C arrays.

A static memory buffer also has a current size (or length) which indicates the number of
usable bytes in the buffer, meaning the number of bytes which were actually written into it by
user code.

A static buffer is a polymorphic object which is formally defined by the abstract type ssm_
sbuffer_t. In that case, abstract means that pointers to existing objects of this type can be
used but no object shall be defined using this type name.

This is why a static memory buffer should be declared by the macro ssm_sbuffer_declare().
This macro ensures that the correct amount of storage is reserved and the variable is properly
initialized to an empty buffer.

The following example defines a static memory buffer named foo with a maximum capacity
of 50 bytes:

ssm_sbuffer_declare (foo, 50);

In practice, a variable which is defined by the macro ssm_sbuffer_declare() has no named
type. It is only specified that it contains a field named buf which is of type ssm_sbuffer_t.
Thus, the actual ssm_sbuffer_t is in fact foo.buf. Example:

ssm_sbuffer_declare (foo, 10);
ssm_sbuffer_import (&foo.buf, &someData, sizeof(someData));
size_t len = ssm_sbuffer_length (&foo.buf);

Note that, unlike C++, the C language does not forbid the definition of objects of an abstract
type (the concept of abstract type does not even exist in C). So the following code compiles but
it is incorrect: the variable is uninitialized and no storage is reserved for the buffer data.

SO, DO NOT USE THIS:
ssm_sbuffer_t foo;

5.2 Creating static buffers

* ssm_sbuffer_t
Abstract definition of a static buffer.

E:ypedef ... ssm_sbuffer_t; }

No object of this type shall be defined. To define an actual static buffer, use the macro
ssm_sbuffer_declare(). See the section “Static buffers overview” above for more details on
the usage of static buffers.

Correct example:

ssm_sbuffer_declare (b, 10);

ssm_sbuffer_import (&b.buf, &someData, sizeof (someData));
size_t len = ssm_sbuffer_length (&b.buf);
myFunc (&b.buf);

Incorrect example, DO NOT USE:

26 SSM Library 1.2

ssm_sbuffer_t b;
Pointer to the type ssm_sbuffer_t may be used as function parameters. Example:

void myFunc (const ssm_sbuffer_t* b) {
size_t len = ssm_sbuffer_length (b);

}

* ssm_sbuffer_declare

Declare a ssm_sbuffer_t variable.

#define ssm_sbuffer_declare(variable,size) \
ssm_sbuffer_struct(size) variable = ssm_sbuffer_init(size)

Parameter Description

variable Name of the variable to declare. The variable is safely initialized to an empty
buffer.

size Maximum number of bytes in the buffer. Shall be a compile-time constant,

unless the compiler accepts variable-length arrays. If the compiler accepts such
runtime sizes, size shall be an idempotent expression (ie. its result shall yield
the same value for each evaluation and it shall have no side effect).

This macro declares a ssm_sbuffer_t variable.

In practice, variable has no named type. It is only specified that it contains a field named
buf which is of type ssm_sbuffer_t. Thus, the actual ssm_sbuffer_t is in fact variable.buf.

For syntactic reasons, this macro cannot be used when the ssm_sbuffer_t is not a single
variable but part of a structure for instance. In that case, use the macros ssm_sbuffer_struct()
and ssm_sbuffer_init().

* ssm_sbuffer_struct

Declare an uninitialized ssm_sbuffer_t field.

Etdefine ssm_sbuffer_struct(size)

Parameter Description
size Maximum number of bytes in the buffer. Shall be a compile-time constant,
unless the compiler accepts variable-length arrays.

This macro declares an uninitialized ssm_sbuffer_t field.

When declaring a simple ssm_sbuffer_t variable, use the macro ssm_sbuffer_declare()
instead. The macro ssm_sbuffer_struct () shall be reserved for contexts where it is not possible
to initialize the data, such as in the case of a field within a structure. Be sure to initialize the
corresponding data using the macro ssm_sbuffer_init() with exactly the same size value.

Example:

typedef struct {
int before;
ssm_sbuffer_struct(50) buf;
int after;

} my_struct_t;

Chapter 5: Static memory buffers 27

my_struct_t a = {
.before = 0x1234567,
.buf = ssm_sbuffer_init(50),
.after = O0x1ABCDEF

};

* ssm_sbuffer_init

Initializer for a ssm_sbuffer_t field.

Etdefine ssm_sbuffer_init(size)

Parameter Description

size Maximum number of bytes in the buffer. Shall be a compile-time constant,
unless the compiler accepts variable-length arrays. Shall be exactly the same
value as used in the corresponding ssm_sbuffer_struct () macro.

This macro returns the initializer for a ssm_sbuffer_t field.
See the macro ssm_sbuffer_struct () for an example.

When declaring a simple ssm_sbuffer_t variable, use the macro ssm_sbuffer_declare()
instead.

5.3 Manipulating static buffers

* ssm_sbuffer_import

Copy ("import") a memory area into a ssm_sbuffer_t.

ssm_status_t ssm_sbuffer_import (ssm_sbuffer_t* dest,
const void* src,
size_t maxSize);

Parameter Mode Description

dest out Buffer to fill.

sre in Address of a memory buffer. Can be NULL (same as empty buffer).
maxSize in Maximum number of bytes to copy from src.

return A status value.

* ssm_sbuffer_data

Read-only access to a ssm_sbuffer_t binary content.

[const void* ssm_sbuffer_data (const ssm_sbuffer_t* buf);

Parameter Mode Description
buf in The static buffer to read.
return The address of the buffer binary content. The application is not
allowed to modify this buffer.

28 SSM Library 1.2

* ssm_sbuffer_length
Get the length of a ssm_sbuffer_t content.

[size_t ssm_sbuffer_length (const ssm_sbuffer_t* buf);

Parameter Mode Description
buf in The static buffer to read.
return The used length of the buffer. In case of null src or detected memory
corruption, return zero.

* ssm_sbuffer_max_length

Get the maximum data size that can be held in a ssm_sbuffer_t.

[size_t ssm_sbuffer_max_length (const ssm_sbuffer_t* buf);

Parameter Mode Description
buf in The static buffer to read.
return The maximum number of bytes that can be held in the buffer object.
In case of null src or detected memory corruption, return zero.

* ssm_sbuffer_resize

Resize a ssm_sbuffer_t.

[ssm_status_t ssm_sbuffer_resize (ssm_sbuffer_t* buf, size_t length);

Parameter Mode Description
buf in,out The static buffer to resize.
length in New length of the static buffer. If larger than the maximum size of the

buffer, the buffer is resized to its maximum length and SSM_TRUNCATED
is returned.

return A status value.

The content of the buffer is resized to the specified length. If the new length is longer than
the previous length, the binary content of the buffer after the previous content is undefined.
If the new length is shorter than the previous length, the buffer content is truncated and the
returned status is SSM_OK.

* ssm_sbuffer_set

Set all bytes in a ssm_sbuffer_t to a given value.

[ssm_status_t ssm_sbuffer_set (ssm_sbuffer_t* buf, uint8_t value);

Parameter Mode Description
buf in,out The static buffer to update.
value in Value to set in all bytes in the buffer.

return A status value.

Chapter 5: Static memory buffers 29

All bytes inside the buffer are updated with the same common value. The size of the buffer
is unchanged.

* ssm_sbuffer_set_range

Set a range of bytes in a ssm_sbuffer_t to a given value.

ssm_status_t ssm_sbuffer_set_range (ssm_sbuffer_t* buf,
size_t start,
size_t length,
uint8_t value);

Parameter Mode Description

buf in,out The static buffer to update.

start in Starting index in the buffer of the area to modify.
length in Length in bytes of the area to modify.

value in Value to set in all bytes in the area to modify.

return A status value.

All bytes inside a specified range in the buffer are updated with the same common value.
The size of the buffer is unchanged.

If the specified range is partially or entirely outside the current buffer size, the part of the
range which is inside the buffer is updated and SSM_TRUNCATED is returned.

* ssm_sbuffer_copy

Copy the content of a ssm_sbuffer_t into another one.

[ssm_status_t ssm_sbuffer_copy (ssm_sbuffer_t* dest, const ssm_sbuffer_t* src); }

Parameter Mode Description
dest out Receive a copy of the static buffer src.
src in Source static buffer. Can be NULL (same as empty buffer).

return A status value.

* ssm_sbuffer_concat

Append the content of a ssm_sbuffer_t at the end of another one.

[ssm_status_t ssm_sbuffer_concat (ssm_sbuffer_t* dest, const ssm_sbuffer_t* src)}

Parameter Mode Description
dest in,out Receive a copy of the static buffer src at end of previous value.
src in Source static buffer. Can be NULL (same as empty buffer).

return A status value.

* ssm_sbuffer_compare

Compare the content of two ssm_sbuffer_t.

30 SSM Library 1.2

ssm_status_t ssm_sbuffer_compare (const ssm_sbuffer_t* bufl,
const ssm_sbuffer_t* buf2);

Parameter Mode Description
bufl in First buffer to compare. Can be NULL (same as empty buffer).
buf2 in Second buffer to compare. Can be NULL (same as empty buffer).

return A status value, SSM_GREATER, SSM_EQUAL or SSM_LOWER according to
whether the first buffer is greater than, equal to or less than the second
buffer. Can also be an error code.

ssm_status_t ssm_sbuffer_insert (ssm_sbuffer_t*x buf,
size_t start,
size_t length) ;

Parameter Mode Description

buf in,out The buffer to modify.

start in Index in the buffer where to insert a “hole”.
length in Size of the “hole”.

return A status value.

The content size of the buffer is increased by length bytes. All bytes in the buffer starting at
index start are moved length bytes upward. The previous content of the buffer in the created
“hole” is left unmodified. If the new size of the buffer would exceed its maximum size, it
truncated to its maximum size and SSM_TRUNCATED is returned. If start is greater than the
current buffer size, the buffer is unmodified and SSM_INDEXRANGE is returned.

Chapter 6: Dynamic memory buffers 31

6 Dynamic memory buffers

6.1 Dynamic memory buffers overview
A dynamic memory buffer uses dynamic memory allocation to store the content.

See Section 2.4 [Dynamic memory management|, page 10 for more details on the implemen-
tation of memory allocation.

A dynamic memory buffer is defined by the type ssm_dbuffer_t. Since a dynamic memory
buffer points to allocated memory, it is essential that any such object is properly initialized. This
is why a dynamic memory buffer should be declared by the macro ssm_dbuffer_declare().
This macro ensures that the variable is properly initialized to an empty buffer.

The following example defines a dynamic memory buffer named foo:

ssm_dbuffer_declare (foo);

ssm_dbuffer_import (&foo, &someData, sizeof (someData));
size_t len = ssm_dbuffer_length (&foo);

Note that, unlike C++, the C language does not have any constructor mechanism providing
a guaranteed initial content to an object. Using a uninitialized dynamic buffer object may lead
to crash or other unexpected behavior. So the following code compiles but it is incorrect: the
variable is uninitialized and may point to invalid data.

SO, DO NOT USE THIS:

ssm_dbuffer_t foo;

To avoid memory leaks, it is essential that any dynamic buffer object is freeed before the
object goes out of scope. Use the function ssm_dbuffer_free() as illustrated below:

void f(void)
{

ssm_dbuffer_declare (foo);

ssm_dbuffer_free (&foo);

¥

Pay attention to early return paths which could lead to memory leaks as in the following
example:

void f(void)

{
ssm_dbuffer_declare (foo);
if (some_condition) {
/* MEMORY LEAK HERE x*/
return;
}
ssm_dbuffer_free (&foo);
}

6.2 Creating and destroying dynamic buffers

32 SSM Library 1.2

* ssm_dbuffer_t

Definition of a dynamic buffer.

[%ypedef ... ssm_dbuffer_t; }

To define an actual dynamic buffer, use the macro ssm_dbuffer_declare(). See the section
“Dynamic buffers overview” above for more details on the usage of dynamic buffers.

Correct example:
ssm_dbuffer_declare (b);

ssm_dbuffer_import (&b, &someData, sizeof (someData));
size_t len = ssm_dbuffer_length (&b);

Incorrect example, the object is not properly initialized. DO NOT USE:
ssm_dbuffer_t b;

* ssm_dbuffer_declare

Declare a ssm_dbuffer_t variable.

#define ssm_dbuffer_declare(variable) \
ssm_dbuffer_t variable = ssm_dbuffer_init

Parameter Description
variable Name of the variable to declare. The variable is safely initialized to an empty
buffer.

This macro declares a ssm_dbuffer_t variable.

For syntactic reasons, this macro cannot be used when the ssm_dbuffer_t is not a single
variable but part of a structure for instance. In that case, use the macro ssm_dbuffer_init ()
to initialize the ssm_dbuffer_t field.

* ssm_dbuffer_init

Initializer for a ssm_dbuffer_t field.

(%define ssm_dbuffer_init(size) ... J

This macro returns the initializer for a ssm_dbuffer_t field.

When declaring a simple ssm_dbuffer_t variable, use the macro ssm_dbuffer_declare()
instead. The macro ssm_dbuffer_init shall be reserved for contexts where it is not possible
to initialize the data, such as in the case of a field within a structure. Be sure to initialize the
corresponding data using the macro ssm_dbuffer_init.

Example:

typedef struct {
int before;
ssm_dbuffer_t str;
int after;

} my_struct_t;

my_struct_t a = {

Chapter 6: Dynamic memory buffers 33

.before = 0x1234567,
.str = ssm_dbuffer_init,
.after = Ox1ABCDEF

}s

* ssm_dbuffer_free

Free a ssm_dbuffer_t dynamic buffer.

[ssm_status_t ssm_dbuffer_free (ssm_dbuffer_t* buf);

Parameter Mode Description
buf injout Dynamic buffer to free.
return A status code.

This function frees a ssm_dbuffer_t.

Upon return, the object is still valid but has the semantic of an empty buffer and has no
longer any dynamic storage associated with it.

6.3 Manipulating dynamic buffers

* ssm_dbuffer_import

Copy ("import") a memory area into a ssm_dbuffer_t.

ssm_status_t ssm_dbuffer_import (ssm_dbuffer_t* dest,
const void* src,
size_t maxSize);

Parameter Mode Description

dest out Buffer to fill.

src in Address of a memory buffer. Can be NULL (same as empty buffer).
maxSize in Maximum number of bytes to copy from src.

return A status value.

* ssm_dbuffer_data

Read-only access to a ssm_dbuffer_t binary content.

[const void* ssm_dbuffer_data (const ssm_dbuffer_t* buf);

Parameter Mode Description
buf in The dynamic buffer to read.
return The current address of the buffer binary content. The application is
not allowed to modify this buffer.

Warning: The returned address is valid only as long as buf is not modified. Since this
function is quite fast, it is recommended to not store the returned value and invoke the function
each time the address is needed.

Good example:

34 SSM Library 1.2

dump (ssm_dbuffer_data (&buf));
ssm_dbuffer_import (&buf, &someData, sizeof (someData));
dump (ssm_dbuffer_data (&buf));

Bad example, DO NOT DO THIS:

const void* data = ssm_dbuffer_data (&buf);

dump (data);

ssm_dbuffer_import (&buf, &someData, sizeof (someData));

dump (data); /* WRONG, ’data’ may no longer point to ’buf’ content */

* ssm_dbuffer_length
Get the length of a ssm_dbuffer_t content.

[size_t ssm_dbuffer_length (const ssm_dbuffer_t* buf);

Parameter Mode Description
buf in The dynamic buffer to read.
return The used length of the buffer. In case of null src or detected memory
corruption, return zero.

* ssm_dbuffer_resize

Resize a ssm_dbuffer_t.

[ssm_status_t ssm_dbuffer_resize (ssm_dbuffer_t* buf, size_t length);

Parameter Mode Description
buf injout The dynamic buffer to resize.
length in New length of the dynamic buffer.

return A status value.

The content of the buffer is resized to the specified length. If the new length is longer than
the previous length, the binary content of the buffer after the previous content is undefined.
If the new length is shorter than the previous length, the buffer content is truncated and the
returned status is SSM_OK.

* ssm_dbuffer_set

Set all bytes in a ssm_dbuffer_t to a given value.

[ssm_status_t ssm_dbuffer_set (ssm_dbuffer_t* buf, uint8_t value);

Parameter Mode Description
buf in,out The dynamic buffer to update.
value in Value to set in all bytes in the buffer.

return A status value.

All bytes inside the buffer are updated with the same common value. The size of the buffer
is unchanged.

Chapter 6: Dynamic memory buffers 35

* ssm_dbuffer_set_range

Set a range of bytes in a ssm_dbuffer_t to a given value.

ssm_status_t ssm_dbuffer_set_range (ssm_dbuffer_t* buf,
size_t start,
size_t length,
uint8_t value);

Parameter Mode Description

buf in,out The dynamic buffer to update.

start in Starting index in the buffer of the area to modify.
length in Length in bytes of the area to modify.

value in Value to set in all bytes in the area to modify.

return A status value.

All bytes inside a specified range in the buffer are updated with the same common value.
The size of the buffer is unchanged.

If the specified range is partially or entirely outside the current buffer size, the part of the
range which is inside the buffer is updated and SSM_TRUNCATED is returned.

* ssm_dbuffer_copy
Copy the content of a ssm_dbuffer_t.

[ssm_status_t ssm_dbuffer_copy (ssm_dbuffer_t* dest, const ssm_dbuffer_t* src); j

Parameter Mode Description
dest out Receive a copy of the dynamic buffer src.
src in Source dynamic buffer. Can be NULL (same as empty buffer).

return A status value.

* ssm_dbuffer_concat
Append the content of a ssm_dbuffer_t at the end of another one.

[ssm_status_t ssm_dbuffer_concat (ssm_dbuffer_t* dest, const ssm_dbuffer_tx* src)}

Parameter Mode Description
dest injout Receive a copy of the dynamic buffer src at end of previous value.
src in Source dynamic buffer. Can be NULL (same as empty buffer).

return A status value.

* ssm_dbuffer_compare

Compare the content of two ssm_dbuffer_t.

ssm_status_t ssm_dbuffer_compare (const ssm_dbuffer_t* bufl,
const ssm_dbuffer_t* buf2);

36

Parameter Mode
bufl in
buf2 in

return

SSM Library 1.2

Description

First buffer to compare. Can be NULL (same as empty buffer).
Second buffer to compare. Can be NULL (same as empty buffer).

A status value, SSM_GREATER, SSM_EQUAL or SSM_LOWER according to
whether the first buffer is greater than, equal to or less than the second
buffer. Can also be an error code.

* ssm_dbuffer_insert

Insert a “hole” in a ssm_dbuffer_t, shifting the rest of the buffer upward.

ssm_status_t ssm_dbuffer_insert (ssm_dbuffer_t* buf,

size_t start,
size_t length);

Parameter Mode
buf in,out
start in
length in
return

Description
The buffer to modify.
Index in the buffer where to insert a “hole”.

Size of the “hole”.
A status value.

The content size of the buffer is increased by length bytes. All bytes in the buffer starting at
index start are moved length bytes upward. The previous content of the buffer in the created
“hole” is left unmodified. If start is greater than the current buffer size, the buffer is unmodified
and SSM_INDEXRANGE is returned.

Chapter 7: Low-level mechanisms 37

7 Low-level mechanisms

7.1 Memory corruption detection

As explained in Section 1.7 [Using "canary" runtime checks|, page 4, the SSM library can be
used with "canary checks", a debug mode which detects memory corruptions.

When a memory corruption is detected in an application, the default behavior is to report an
error message and abort the application. Within the Linux kernel, a kernel message of severity
alert is logged.

This section explains how to override this default behavior.

* ssm_canary_corrupted_handler_t

Memory corruption handler profile.

[typedef void (*ssm_canary_corrupted_handler_t) (const char* file, size_t line) ;}

Parameter Mode Description
file in Application source file name.
line in Line number in the source file.

A function of this type is invoked when "canary" runtime checks are enabled and a memory
corruption is detected.

The parameters of the function indicate the location of the failure, ie. the user code which
invoked an SSM function which detected the memory corruption.

* ssm_set_canary_corrupted_handler

Establish a user-defined memory corruption handler.

ssm_canary_corrupted_handler_t
ssm_set_canary_corrupted_handler (ssm_canary_corrupted_handler_t handler);

Parameter Mode Description
handler in New handler to set. If NULL, revert to the default handler.
return The previous handler or NULL if the default handler was active.

This function specifies which function should be used when a memory corruption is detected.
This function does nothing if canary runtime checks are disabled.

In user-mode programs, the default handler displays an error message on the standard error
and aborts the application.

This function is not thread-safe.

7.2 Manipulating raw memory

The functions in this section manipulate raw memory areas. They should not be used in
normal operations and should be reserved to extreme situations.

38 SSM Library 1.2

* SSm_Copy

General-purpose memory copy.

-
ssm_status_t ssm_copy (void* dest,
size_t destSize,
const void* src,
size_t srcSize,
size_t* copiedSize);

=

Parameter Mode Description

dest out Base address of destination area.

destSize in Maximum size in bytes of destination area.

src in Base address of source area. Can be NULL, in which case srcSize is
implicitely zero.

srcSize in Size in bytes of source area. Ignored if src is NULL.

copiedSize out Receive the actual number of copied bytes. Can be NULL (value not

returned).
return A status value.

This function is an alternate version of the standard memcpy () with bounded sizes. Overlap-
ping memory areas between src and dest are allowed.

If not NULL, copiedSize receives the actual number of copied bytes. If the returned status is
SSM_OK, it gets the same value as srcSize. If the returned status is SSM_TRUNCATED, it gets the
same value as destSize. For all other returned status, the value pointed by copiedSize is not
modified. It is safe to point directly to a size_t variable containing the used size of dest. In
case of error, neither dest nor *copiedSize are modified).

* Ssm_compare

General-purpose memory comparison.

ssm_status_t ssm_compare (const void* addri,
size_t sizel,
const void* addr2,
size_t size2);

Parameter Mode Description

addrl in Base address of first memory area.
sizel in Size in bytes of first memory area.
addr2 in Base address of second memory area.
size2 in Size in bytes of second memory area.

return The result of the comparison between the two memory areas, either
SSM_EQUAL, SSM_LOWER, SSM_GREATER or an error code.

This function is an alternate version of the standard memcmp () with bounded sizes.

The two memory areas are compared byte by byte. The function returns SSM_GREATER, SSM_
EQUAL or SSM_LOWER according to whether the first memory area is greater than, equal to or less
than the second memory area.

Chapter 7: Low-level mechanisms 39

Two memory areas are equal if they have the same size and same content. If the two areas
have different sizes, the comparison is made on the smallest of the two sizes and, if both contents
are identical, the area with the smallest size is logically less than the other area.

If any of addrl or addr2 is NULL, it is equivalent to an empty area the size of which is zero.
All empty areas, whether their address is NULL or their size is explicitly zero, are considered as
equal.

* ssm_set

General-purpose memory initialization.

{ssm_status_t ssm_set (void* dest, size_t destSize, uint8_t value);

Parameter Mode Description

dest out Base address of destination area.

destSize in Size in bytes of destination area.

value in The value to set in each byte of the destination area.

return A status value.

This function is an alternate version of the standard memset () with bounded sizes.

* ssm_cstring_length
Compute the length of a C-string.

[size_t ssm_cstring_length(const char* str, size_t maxSize);

Parameter Mode Description
str in Address of a null-terminated C-string.
maxSize in Maximum size of the C-string. Specify SSM_SIZE_MAX if unbounded.

return The length of the C-string or maxSize if no null character was found
in the first maxSize characters.

This function is an alternate version of the standard strnlen() with bounded size. If maxSize
is greater than SSM_SIZE_MAX, the size is assumed to be incorrect and zero is returned.

Chapter 8: Subset of C11 Annex K (Bound-Checking Interfaces) 41

8 Subset of C11 Annex K (Bound-Checking
Interfaces)

8.1 C11 Annex K Overview

The problems of the unsafe C string functions from the C-library have been known for a
long time in the C community. Amongst the various safer-but-not-so-safe alternatives to these
functions, the Annex K of the C11 standard defines a list of string handling functions with
“bound-checking interfaces”.

In the rest of this chapter, we will use the notation “C11K” to designate this annex. Since
the names of the C11K functions end with _s, they are also often called the “_s functions”.

Why using these _s functions when we have the SSM library? It is often necessary to interface
with legacy code which manipulates strings and memory buffers using address and size. While
new code can use high-level objects from the SSM library, these high-level objects must be
imported or exported as raw address and size pairs to interface with legacy code. When there
is some need to manipulate memory using address and size pairs in the “glue” code between
the new and legacy code, the C11K functions are a reasonable alternative to the old unsafe
functions.

However, the C11 standard states that the Annex K is optional. In fact, most C11 imple-
mentations, including the GNU C library, do not include the _s functions'. As a workaround,
the SSM library implements a subset of the C11K functions.

8.2 C11 Annex K Support

The subset of the C11K which is implemented in the SSM library provides the basic services
to manipulate strings and memory buffers. There is no support for higher-level services which are
defined in C11K, namely file handing services, multi-bytes character strings or sorting functions.

The following table lists the C11K subset which is supported in the SSM library.

Declaration C11 Reference Declaration C11 Reference
errno_t K.3.2 strcat_s K.3.7.2.1
rsize_t K.3.3 strncat_s K.3.7.2.2
RSIZE_MAX K.34 memset_s K.3.7.4.1
memcpy_s K.3.7.1.1 strerror_s K.3.7.4.2
memmove_s K.3.7.1.2 strerrorlen_s K.3.7.4.3
strcpy_s K.3.7.1.3 strlen_s K.3.7.44

strncpy_s K.3.7.14

Please also note the following precisions or restrictions concerning the C11K subset in the
SSM library, compared to the C11 standard:

e C11K specifies that the _s functions are defined in the various standard headers. In the
SSM library, they are defined in ssm.h.

e C11K specifies that the _s functions may optionally set errno on error. The SSM library
does not set errno.

e C11K specifies that the _s functions return errno_t values but no precise value is defined
for any error case. The only requirement is that zero is returned on success. The _s
functions from the SSM library return errno_t values which are numerically identical to

1 The fact that the _s functions were originally defined by Microsoft as a proprietary extension is a common
explanation.

42 SSM Library 1.2

the ssm_status_t enumeration values. This is compatible whith the C11K standard since
SSM_OK is zero.

e There is no support for “runtime-constraint handlers”. The function set_constraint_
handler_s is not provided.

* SSM_C11K
To be defined in the application to enable the standard naming from C11K.

#define SSM_C11K
#include "ssm.h"

To avoid any interference with another implementation of C11K which could be used in other
modules of the application, all defined symbols follow the SSM naming rules: they start with
the prefix ssm_ (functions) or SSM_ (constants). For instance, the function strcpy_s is in fact
ssm_strcpy_s.

To write “standard” C11 code, define the symbol SSM_C11K before including ssm.h, either
as a project option (when possible by the development tools) or in the source file as illustrated
above.

When SSM_C11K is defined, the standard C11K names are defined as macros. Thus, the
function strcpy_s becomes available.

8.3 C11 Annex K Reference

This chapter describes the _s functions which are implemented in the SSM library. This is
mainly a copy from the C11 standard (ISO/IEC 9899:2011) Annex K.

*x ssm_errno_t and errno_t

A integer type for error codes.

typedef int ssm_errno_t;
typedef int errno_t; /* with SSM_C11K */

C11K adds this type for clarity and specifies it as int. The usual error codes in the C library
use int directly. It is redefined in SSM since it is part of most C11K function profiles.

% ssm_rsize_t and rsize_t

An integer type for data sizes.

typedef size_t ssm_rsize_t;
typedef size_t rsize_t; /* with SSM_C11K */

C11K specifies this type as size_t. It is unclear why this was necessary. It is redefined in
SSM since it is part of most C11K function profiles.

* SSM_RSIZE_MAX and RSIZE_MAX

Maximum size of strings and memory buffers.

#define SSM_RSIZE_MAX ((size_t)SSM_SIZE_MAX)
#define RSIZE_MAX ((size_t)SSM_SIZE_MAX) /* with SSM_C11K */

Chapter 8: Subset of C11 Annex K (Bound-Checking Interfaces) 43

C11K specifies RSIZE_MAX with the same semantics as SSM_SIZE_MAX, a simple and pragmatic
way of detecting incorrectly computed sizes. The only difference is that RSIZE_MAX must expand
to a value of type size_t. It is unclear why C11K specifies it as size_t and not rsize_t, both
types being equivalent in fact.

* Ssm_memmove_s and memmove_s

Copy a memory area.

ssm_errno_t ssm_memmove_s (void* sl1, ssm_rsize_t slmax,
const void* s2, ssm_rsize_t n);

errno_t memmove_s (void* s1, rsize_t slmax, const void* s2, rsize_t n);

Parameter Mode Description

s1 out Destination buffer. Cannot be NULL.

slmax in Maximum size of the destination buffer. Cannot be greater than
RSIZE_MAX.

s2 in Source buffer. Cannot be NULL.

n in Number of bytes to copy. Cannot be greater than slmax.

return A status value.

The memmove_s function copies n characters from the object pointed to by s2 into the object
pointed to by sl. This copying takes place as if the n characters from the object pointed to
by s2 are first copied into a temporary array of n characters that does not overlap the objects
pointed to by sI or s2, and then the n characters from the temporary array are copied into the
object pointed to by s1.

If there is a runtime-constraint violation, the memmove_s function stores zeros in the first
slmax characters of the object pointed to by sl if sI is not a null pointer and sImax is not
greater than RSIZE_MAX.

* ssm_memcpy_s and memcpy_s

Copy a memory area.

ssm_errno_t ssm_memcpy_s (void* s1, ssm_rsize_t slmax,
const void* s2, ssm_rsize_t n);

errno_t memcpy_s (void* s1, rsize_t slmax, const void* s2, rsize_t n);

Parameter Mode Description

s1 out Destination buffer. Cannot be NULL.

slmax in Maximum size of the destination buffer. Cannot be greater than
RSIZE_MAX.

s2 in Source buffer. Cannot be NULL.

n in Number of bytes to copy. Cannot be greater than slmax.

return A status value.

In C11K, the memcpy_s function has the same specification as the memmove_s function, except
that the objects pointed to by s1 or s2 cannot overlap. In the SSM library, the memcpy_s function
allows overlapping areas. So, in practice, the memcpy_s and memmove_s functions are identical.

44 SSM Library 1.2

*x ssm_memset_s and memset_s

Initialize a memory area with a given value.

ssm_errno_t ssm_memset_s (void* s, ssm_rsize_t smax, int c, ssm_rsize_t n);

errno_t memset_s (void* s, rsize_t smax, int c, rsize_t n);

Parameter Mode Description
s out Destination buffer. Cannot be NULL.
smax in Maximum size of the destination buffer. Cannot be greater than
RSIZE_MAX.
c in The value to set in each byte of the destination buffer.
in Number of bytes to initialize. Cannot be greater than smax.

return A status value.

The memset_s function copies the value of ¢ (converted to an unsigned char) into each of
the first n characters of the object pointed to by s. Unlike memset, any call to the memset_s
function shall be evaluated strictly according to the rules of the abstract machine as described in
C11 5.1.2.3. That is, any call to the memset_s function shall assume that the memory indicated
by s and n may be accessible in the future and thus must contain the values indicated by c.

If there is a runtime-constraint violation, then if s is not a null pointer and smax is not
greater than RSIZE_MAX, the memset_s function stores the value of ¢ (converted to an unsigned
char) into each of the first smax characters of the object pointed to by s.

* ssm_strcpy_s and strcpy_s

Copy a null-terminated string.

ssm_errno_t ssm_strcpy_s (char* s1, ssm_rsize_t slmax, const charx s2);

errno_t strcpy_s (charx s1, rsize_t slmax, const char* s2);

Parameter Mode Description

sl out Destination string buffer. Cannot be NULL.

slmax in Maximum size of the destination string buffer. Cannot be greater
than RSIZE_MAX. Shall be greater than strnlen_s(s2, simax).

52 in Source string. Cannot be NULL.

return A status value.

The strcpy_s function copies the string pointed to by s2 (including the terminating null
character) into the array pointed to by sI.

All elements following the terminating null character (if any) written by strcpy_s in the
array of slmax characters pointed to by s1 take unspecified values when strcpy_s returns.

C11K specifies that copying shall not take place between objects that overlap. In the SSM
library, the strcpy_s function allows overlapping areas.

If there is a runtime-constraint violation, then if s1 is not a null pointer and sImax is greater
than zero and not greater than RSIZE_MAX, then strcpy_s sets s1[0] to the null character.

* ssm_strncpy_s and strncpy_s

Copy a null-terminated string with bounded size.

Chapter 8: Subset of C11 Annex K (Bound-Checking Interfaces) 45

ssm_errno_t ssm_strncpy_s (char* s1, ssm_rsize_t silmax,
const char* s2, ssm_rsize_t n);

errno_t strncpy_s (char* s1, rsize_t slmax, const char* s2, rsize_t n);

Parameter Mode Description

s1 out Destination string buffer. Cannot be NULL.

slmax in Maximum size of the destination string buffer. Cannot be greater
than RSIZE_MAX. Shall be greater than strnlen_s(s2, simax).

s2 in Source string. Cannot be NULL.

n in Maximum number of characters to copy, not including the trailing

null-character. If n is not less than sImax, then sImax shall be greater
than strnlen_s(s2, simax).
return A status value.
The strncpy_s function copies not more than n successive characters (characters that follow

a null character are not copied) from the array pointed to by s2 to the array pointed to by slI.
If no null character was copied from s2, then sl [n] is set to a null character.

All elements following the terminating null character (if any) written by strncpy_s in the
array of slmax characters pointed to by sl take unspecified values when strncpy_s returns.

The strncpy_s function can be used to copy a string without the danger that the result will
not be null terminated or that characters will be written past the end of the destination array

C11K specifies that copying shall not take place between objects that overlap. In the SSM
library, the strncpy_s function allows overlapping areas.

If there is a runtime-constraint violation, then if s1 is not a null pointer and slmax is greater
than zero and not greater than RSIZE_MAX, then strncpy_s sets sI1 [0] to the null character.

*x ssm_strcat_s and strcat_s

Concatenate two null-terminated strings.

ssm_errno_t ssm_strcat_s (char*x sl1, ssm_rsize_t slmax, const char* s2);

errno_t strcat_s (char* s1, rsize_t slmax, const char* s2);

Parameter Mode Description

sl injout Destination string buffer. Cannot be NULL.

slmax in Maximum size of the destination string buffer. Cannot be greater
than RSIZE_MAX. Cannot be zero.

52 in Source string. Cannot be NULL.

return A status value.

The strcat_s function appends a copy of the string pointed to by s2 (including the termi-
nating null character) to the end of the string pointed to by sI. The initial character from s2
overwrites the null character at the end of sl.

All elements following the terminating null character (if any) written by strcat_s in the
array of sImax characters pointed to by sl take unspecified values when strcat_s returns.

Let m denote the value simax - strnlen_s(s1, slmax) upon entry to strcat_s. m shall
not equal zero. m shall be greater than strnlen_s(s2, m).

C11K specifies that copying shall not take place between objects that overlap. In the SSM
library, the strcat_s function allows overlapping areas.

46 SSM Library 1.2

If there is a runtime-constraint violation, then if s1 is not a null pointer and sImax is greater
than zero and not greater than RSIZE_MAX, then strcat_s sets s1[0] to the null character.

* ssm_strncat_s and strncat_s

Concatenate two null-terminated strings with bounded size.

ssm_errno_t ssm_strncat_s (char* sl1, ssm_rsize_t slmax,
const char* s2, ssm_rsize_t n);

errno_t strncat_s (char* sl rsize_t slmax, const char* s2, rsize_t n);

Parameter Mode Description

sl injout Destination string buffer. Cannot be NULL.

slmax in Maximum size of the destination string buffer. Cannot be greater
than RSIZE_MAX. Cannot be zero.

52 in Source string. Cannot be NULL.

n in Maximum number of characters to copy, not including the trailing

null-character. Cannot be greater than RSIZE_MAX.
return A status value.

Let m denote the value simax - strnlen_s(s1, slmax) upon entry to strcat_s. m shall
not equal zero. If n is not less than m, then m shall be greater than strnlen_s(s2, m).

The strncat_s function appends not more than n successive characters (characters that
follow a null character are not copied) from the array pointed to by s2 to the end of the string
pointed to by s1. The initial character from s2 overwrites the null character at the end of sI. If
no null character was copied from s2, then s1[simax-m+n] is set to a null character.

All elements following the terminating null character (if any) written by strncat_s in the
array of sImax characters pointed to by sl take unspecified values when strncat_s returns.

C11K specifies that copying shall not take place between objects that overlap. In the SSM
library, the strcat_s function allows overlapping areas.

If there is a runtime-constraint violation, then if sI is not a null pointer and sImax is greater
than zero and not greater than RSIZE_MAX, then strncat_s sets sI[0] to the null character.

*x ssm_strnlen_s and strnlen_s

Get the length of a null-terminated string with bounded size.

size_t ssm_strnlen_s (const char* s, size_t maxsize);

size_t strnlen_s (const char* s, size_t maxsize);

Parameter Mode Description
S in String to get the length of.
maxsize in Maximum number of characters to check.

return Length of the string or zero if s1 is NULL.
The strnlen_s function computes the length of the string pointed to by s.

The strnlen_s function returns the number of characters that precede the terminating null
character. If there is no null character in the first maxsize characters of s then strnlen_s
returns maxsize. At most the first maxsize characters of s shall be accessed by strnlen_s.

Chapter 8: Subset of C11 Annex K (Bound-Checking Interfaces) 47

*x ssm_strerror_s and strerror_s

Map an error code to a string value.

ssm_errno_t ssm_strerror_s (char* s, ssm_rsize_t maxsize, ssm_errno_t errnum);

errno_t strerror_s (char* s, rsize_t maxsize, errno_t errnum);

Parameter Mode Description

S out The string buffer to receive the message string. Cannot be NULL.

maxsize in Maximum size of the string buffer. Cannot be zero, cannot be greater
than RSIZE_MAX.

errnum in The error code to get a description of.

return A status value.

The strerror_s function maps the number in errnum to a locale-specific message string.
Typically, the values for errnum come from errno, but strerror_s shall map any value of type
int to a message.

Restriction: The SSM library implementation of strerror_s does not return locale-specific
messages. All returned messages are in English. Furthermore, only the errno_t values returned
by the C11K functions of the SSM library are recognized. General system error code from
errno are not valid values for errnum. Any errnum which does not correspond to a known
ssm_status_t value will return the same "Unknown" string.

If the length of the desired string is less than maxsize, then the string is copied to the array
pointed to by s.

Otherwise, if maxsize is greater than zero, then maxsize-1 characters are copied from the
string to the array pointed to by s and then s[maxsize-1] is set to the null character. Then, if
maxsize is greater than 3, then s[maxsize-2], s[maxsize-3] and s[maxsize-4] are set to the
character period (.).

If there is a runtime-constraint violation, then the array (if any) pointed to by s is not
modified.

* ssm_strerrorlen_s and strerrorlen_s

Get the length of the string that maps an error code.

size_t ssm_strerrorlen_s (ssm_errno_t errnum);

size_t strerrorlen_s (errno_t errnum);

Parameter Mode Description
errnum in The error code to get a description of.
return Number of characters (not including the null character) in the full
message string.

The strerrorlen_s function calculates the length of the (untruncated) locale-specific mes-
sage string that the strerror_s function maps to errnum.

Restriction: The SSM library implementation of strerrorlen_s has the same restrictions
as strerror_s.

Index

49

50

Index

E

[0 o « o T v 42

M

113 1] o < T 43
MEMMOVE _S .+ et et ettt ettt et et et ettt 43
MEMS e S .ttt ettt et 44

R

TSIZE Bttt 42
RSIZE _MAX .. i 42

S

ssm_addr _Size.ot 9
ssm_canary_corrupted_handler_t............... 37
SSM_COMPATE . . oot tvet et tiiee et ennnnn. 38
SSIM_COPY + et ettt ettt ettt 38
ssm_cstring length............... 39
ssm_dbuffer_compare............................ 35
ssm_dbuffer_concat..............., 35
ssm_dbuffer_copy.............. ...l 35
ssm_dbuffer_data................. ... 33
ssm_dbuffer_declare...............coiuiiiuinn.. 32
ssm_dbuffer_free............. 33
ssm_dbuffer_import................... 33
ssm_dbuffer_init............. 32
ssm_dbuffer_insert................. 36
ssm_dbuffer_length............................. 34
ssm_dbuffer_resize............. 34
ssm_dbuffer_set, 34
ssm_dbuffer_set_range 35
ssm_dbuffer_t.......... ... 32
ssm_dstring chars......................i... 21
ssm_dstring_compare.................ciiiiiiinn. 23
ssm_dstring_concat.................. 23
SSM_dString COpYvvvviiiiiii 23
ssm_dstring_declare................. ... 20
ssm_dstring free............ il 21
ssm_dstring_import............... 21
ssm_dstring_import_size....................... 21
ssm_dstring_init............l 20
ssm_dstring_length............................. 22
ssm_dstring_seto 22
ssm_dstring_set_rangeoinnnn. 22
ssm_dstring_status_string..................... 24
ssm_dstring_t........... il 20
SSIM_ETTNO_T .ttt ettt ittt 42
SSIM_ BT TOT o\ttt ettt et e 8
ssm_fatal ... 8
ssm_free_t....... . .. 10
SSM_MAalloC _t ..ottt 10
SSM_MEMCPY _S .+ vt e e ettt ettt et 43
SSM_MEMMOVE _S .t ettt ettt eeeeee ettt eieananns 43
SSM_MEMSEt S .ottt ettt ettt 44
SSM_TSizZe_t ... 42
ssm_sbuffer_compare........................ ... 29
ssm_sbuffer_concat..............c.ov ... 29
ssm_sbuffer_copy............ ...l 29
ssm_sbuffer_data................. 27
ssm_sbuffer_declare................couiiiiinn.. 26
ssm_sbuffer_import.................. 27
ssm_sbuffer_init................ 27

ssm_sbuffer_length............................. 28

SSM Library 1.2

ssm_sbuffer_max_length........................ 28
ssm_sbuffer_resize............ 28
ssm_sbuffer_set 28
ssm_sbuffer_set_range 29
ssm_sbuffer_struct.............. 26
ssm_sbuffer_t.......... ...t 25
SIS ottt 39
ssm_set_canary_corrupted_handler............. 37
ssm_set_memory_management..................... 10
ssm_sstring chars................... ...l 16
SSM_SString_compare.............c.coeeuuuuunnnnn. 18
ssm_sstring_concat............................. 17
SSM_SString _COPY ...vvvviiiiiiiiiiiiiia 17
ssm_sstring_declare................. ... 14
ssm_sstring_import.................... 15
ssm_sstring_import_size....................... 15
ssm_sstring_init............l 15
ssm_sstring_length............................. 16
ssm_sstring max_length................... 16
ssm_sstring_set ool 16
ssm_sstring_set_rangen. 17
ssm_sstring_status_string..................... 18
ssm_sstring_struct.............. 14
ssm_sstring_t............ . 13
ssm_status_string............. o ol 9
SSM_status_t.......oiiiii 7
SSM_SErCat _S ...ttt 45
SSM_SELCPY _S. vttt 44
SSIM_SETrET IO S o\ttt ettt 47
SSM_SErerrorlen_S........ouiuiiiniunenenenennn. 47
SSM_SErNncat _S.... .ot 46
SSM_SEINCPY _S ..ottt 44
SSM_SErNlen _S. ...ttt 46
SSM_SUCCESS ot ittt et ettt e e 8
SSM_ADDRESS _MAX ...ttt 9
SOM _BUG . .ottt e 8
SOM _C1aK oo 42
SSM_CORRUPTEDottt it 8
SSM_EQUAL ...t e 8
SSM_GREATERttt e 8
SSM_INDEXRANGE.c.iiiii i 8
SSM_LOWERttt e e 8
SSM_MAJOR_VERSIONttt 7
SSM_MINOR_VERSION ...ttt 7
SSM_NOMEMORYttt e e e e e 8
SSM_NULLIN ...ttt ettt ee e 8
SSM_NULLOUT . ..ottt et e eaans 8
SOM 0K . ot 7
SSM_RSIZE _MAX . . it e e e 42
SSM_SIZE _MAX ... e 9
SSM_SIZETOOLARGEottt 8
SSM_SIZEZERDttt it 8
SSM_TRUNCATEDottt et e 7
SSM_USE_CANARYottt 4
SSM_USE _DLL ..ottt et e 4
SSM_VERSION ...ttt ettt e 7
SSM_VERSION_STRING.......covviiiiiininnnnnnn, 7
StrCat_S .. i 45
B CPY S ottt 44
(37 ol =1 ol 1 ol = F AP 47
Strerrorlen _S.........iriiii 47
SEIICAL . .ttt 1
SEINCAt S it e 46
SETCDY . v 1
SEIMCPY S oo it 44
StEYNIeN S .ot e 46

	Overview
	The classical C strings library
	The SSM library
	SSM objects
	Using the SSM library
	Thread-safety
	Dynamic memory allocation
	Using "canary" runtime checks
	Supported platforms
	Code footprint

	Common mechanisms
	SSM library identification
	.{} SSM_MAJOR_VERSION
	.{} SSM_MINOR_VERSION
	.{} SSM_VERSION
	.{} SSM_VERSION_STRING

	Error reporting
	.{} ssm_status_t
	.{} ssm_success
	.{} ssm_error
	.{} ssm_fatal
	.{} ssm_status_string

	Addresses and sizes
	.{} SSM_SIZE_MAX
	.{} SSM_ADDRESS_MAX
	.{} ssm_addr_size

	Dynamic memory management
	.{} ssm_malloc_t
	.{} ssm_free_t
	.{} ssm_set_memory_management

	Static strings
	Static strings overview
	Creating static strings
	.{} ssm_sstring_t
	.{} ssm_sstring_declare
	.{} ssm_sstring_struct
	.{} ssm_sstring_init

	Manipulating static strings
	.{} ssm_sstring_import
	.{} ssm_sstring_import_size
	.{} ssm_sstring_chars
	.{} ssm_sstring_length
	.{} ssm_sstring_max_length
	.{} ssm_sstring_set
	.{} ssm_sstring_set_range
	.{} ssm_sstring_copy
	.{} ssm_sstring_concat
	.{} ssm_sstring_compare
	.{} ssm_sstring_status_string

	Dynamic strings
	Dynamic strings overview
	Creating and destroying dynamic strings
	.{} ssm_dstring_t
	.{} ssm_dstring_declare
	.{} ssm_dstring_init
	.{} ssm_dstring_free

	Manipulating dynamic strings
	.{} ssm_dstring_import
	.{} ssm_dstring_import_size
	.{} ssm_dstring_chars
	.{} ssm_dstring_length
	.{} ssm_dstring_set
	.{} ssm_dstring_set_range
	.{} ssm_dstring_copy
	.{} ssm_dstring_concat
	.{} ssm_dstring_compare
	.{} ssm_dstring_status_string

	Static memory buffers
	Static memory buffers overview
	Creating static buffers
	.{} ssm_sbuffer_t
	.{} ssm_sbuffer_declare
	.{} ssm_sbuffer_struct
	.{} ssm_sbuffer_init

	Manipulating static buffers
	.{} ssm_sbuffer_import
	.{} ssm_sbuffer_data
	.{} ssm_sbuffer_length
	.{} ssm_sbuffer_max_length
	.{} ssm_sbuffer_resize
	.{} ssm_sbuffer_set
	.{} ssm_sbuffer_set_range
	.{} ssm_sbuffer_copy
	.{} ssm_sbuffer_concat
	.{} ssm_sbuffer_compare

	Dynamic memory buffers
	Dynamic memory buffers overview
	Creating and destroying dynamic buffers
	.{} ssm_dbuffer_t
	.{} ssm_dbuffer_declare
	.{} ssm_dbuffer_init
	.{} ssm_dbuffer_free

	Manipulating dynamic buffers
	.{} ssm_dbuffer_import
	.{} ssm_dbuffer_data
	.{} ssm_dbuffer_length
	.{} ssm_dbuffer_resize
	.{} ssm_dbuffer_set
	.{} ssm_dbuffer_set_range
	.{} ssm_dbuffer_copy
	.{} ssm_dbuffer_concat
	.{} ssm_dbuffer_compare
	.{} ssm_dbuffer_insert

	Low-level mechanisms
	Memory corruption detection
	.{} ssm_canary_corrupted_handler_t
	.{} ssm_set_canary_corrupted_handler

	Manipulating raw memory
	.{} ssm_copy
	.{} ssm_compare
	.{} ssm_set
	.{} ssm_cstring_length

	Subset of C11 Annex K (Bound-Checking Interfaces)
	C11 Annex K Overview
	C11 Annex K Support
	.{} SSM_C11K

	C11 Annex K Reference
	.{} ssm_errno_t and errno_t
	.{} ssm_rsize_t and rsize_t
	.{} SSM_RSIZE_MAX and RSIZE_MAX
	.{} ssm_memmove_s and memmove_s
	.{} ssm_memcpy_s and memcpy_s
	.{} ssm_memset_s and memset_s
	.{} ssm_strcpy_s and strcpy_s
	.{} ssm_strncpy_s and strncpy_s
	.{} ssm_strcat_s and strcat_s
	.{} ssm_strncat_s and strncat_s
	.{} ssm_strnlen_s and strnlen_s
	.{} ssm_strerror_s and strerror_s
	.{} ssm_strerrorlen_s and strerrorlen_s

	Index

